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Some of the proposals made by Spalding (1964a) in his ‘Unified theory of friction, 
heat transfer, and mass transfer ’ are examined. The two-component velocity- 
profile family proposed by Spalding is compared with measured boundary-layer 
and wall-jet velocity profiles and is shown to be adequate for flows with moderate 
wake components. The drag law implicit in the velocity-profile family is shown 
to be in good agreement with experimental data. 

Recommendations are provided for entrainment functions for both boundary 
layers and wall jets. 

Predictions of boundary-layer and wall-jet development, based on the recom- 
mended entrainment functions, are presented and compared with experiment. 
The predictions are in good agreement with experiment except in the vicinity of 
separation. 

1. Introduction 
1 . 1 .  Spalding’s uni$ed theory 

A general theoretical framework has been developed by Spalding ( 1 9 6 4 4  for the 
prediction of friction, heat transfer and mass transfer in turbulent boundary 
layers and wall jets. The calculation of the development of the hydrodynamic 
boundary layer? is based upon the ordinary differential equations for the integral 
conservation of mass and momentum and employs two auxiliary functions. 
These are: 

(i) A two-parameter velocity profile having two components; one accounting 
for the effects of mass and momentum transfer to the wall, and the other for 
interactions with the mainstream. 

(ii) A function which relates the rate of mass-entrainment by the boundary 
layer from the mainstream to the profile and flow parameters. 

The utility of the theory depends upon the range of flows for which adequate 
auxiliary functions can be determined. 

1.2. Object of the present paper 

The present work has three main tasks. These are: 

Spalding (1964a) .  

flows. 

(i) To compare with experimental profiles the velocity profile proposed by 

t Unless otherwise stated, the term ‘boundary layer’ may be taken to include wall-jet 
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(ii) To present the results of a survey of the experimental data which have been 
analysed for information about entrainment and to recommend entrainment 
functions for boundary layers and wall jets. 

(iii) To compare with experiment the predictions of the 'unified theory', using 
the entrainment functions determined in (ii) above. 

1.3. Restrictions 

The restrictions to which the flows considered in the the present paper are subject 
are: (i) uniform fluid properties; (ii) hydrodynamically smooth wall; (iii) im- 
permeable wall; (iv) two-dimensional flow. 

2. Mathematical theory 
The object of this section is to derive the equations used for the prediction of 

boundary-layer development and to illustrate the role of the velocity-profile and 
entrainment assumptions in the theoretical structure of the 'unified theory '. 

The f i s t  of the two differential equations to be used is that expressing the 
integral conservation of mass in the boundary layer. This may be written as 

where w, is the velocity at the outer edge of the boundary layer normal to the 
surface, and y, is the boundary-layer thickness. The right-hand side of equation 
(2 .1 )  represents the total rate of entrainment of mass from the mainstream into 
the boundary layer. Equation (2.1) can be re-written 

where the entrainment rate - ni; is defined as 

- m; = - pz7G +PUG dy,/dx. (2.3) 

The other differential equation used is the von K k m h  momentum integral 
equation, as, 6 du, 

- + ( 2 + H ) ? -  = Qc 
dx UQ ax jY 

(2.4) 

where 6, is the momentum thickness of the boundary layer, H the ratio of the 
displacement thickness 6, to the momentum thickness and +ct the local drag 

(2.5) 
coefficient, defined by 

where T is the local shear stress at the wall. 

&j = 7/(PU%), 

We follow Spalding (1964a)  in defining the following non-dimensional 
quantities : 

and 
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Equation (2.2) may then be re-written as 

and equation (2.4) as 
dR,/dR, = -ma, 

= s. dR2 UG) 

dRX 
-+ (1 + H )  R z d R ,  

(2.11) 

(2.12) 

Equations (2.11) and (2.12) would constitute a soluble set if all the quantities 
except R, could be expressed as functions of any two (independent) dependent 
variables, either explicitly or implicitly through auxiliary relationships. We 
again follow Spalding in obtaining the required relationships through velocity- 
profile and entrainment assumptions. 

The velocity profile is assumed to be a member of the two-parameter family 

z = S'f(y+} + - zE)  g(6}, (2.13) 

where z = U/Ua, t = i /ya  and y+ = ,/(TIP) y/v. The quantity z, is a profile para- 
meter and f and g are universal functions. The physical basis for this assumption 
and specific forms for f and g will be discussed in $3. The boundary condition 

= 1 : z = 1, together with the fact that g { t }  is so normalized that g{1} = 1, yields 

the local drag law s4 = zElf{Y&} = zE/fa.  (2.14) 

For a wall jet, where zE > 1, the momentum-thickness Reynolds number R, 
passes through zero and the shape factor H through infinity. For the purposes of 
the numerical integration of equations (2.11) and (2.12), therefore, it  is con- 
venient to eliminate R, and H. To do this the quantities Il and I, are introduced, 
defined by 

(2.15) 

and 

Then we have 

(2.16) 

(2.17), (2.18) 

and equation (2.12) may be written 

We can expand d(12/Il)/dRx as 

However, the quantity fa which appears in the drag law and, through the drag 
law, in the expressions for I .  and I, is found to be slowly varying, so the terms in 
equation (2.20) containing dfa/dR, can be neglected. Equation (2.19) thus 
becomes, after some re-arrangement, 

(2.21) dzE (1 - I,) R, d(lnua)/dR, - Ils + (Il - I,) ( -ma) Rm-- = 
dRX (a12/azE - '21'1 aIl/azE)fG 

22-2 
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With the exception of -mG, all the quantities appearing in equations (2.11 
and (2.21) may be related to the main dependent variables R, and z,. Thus, ona 
the entrainment function - mG has been determined, the development of hydro 
dynamic boundary layers may be predicted, all that is required being thc 
solution of two simultaneous, non-linear, ordinary differential equations. 

3. Velocity profile 
3.1. Previous recommendations 

Coles (1933,  after an extensive review of low-speed boundary-layer data, pro- 
posed the velocity profile 

(3.1.1) 

where both f{y+} and g {c} are functions supposed common to all two-dimensional 
turbulent boundary layers, I7 is a profile parameter and K a constant. The 
functionf{y+} is termed ‘the law of the wall’ and, following Coles, g{[] ‘the law 
of the wake’. 

Experiment shows that the law of the wall has the form 

(3.1.2) 

where K and E are constants. Coles (1956) recommended the values 

K = 0-40, E = 7.691; 

and later (1962) K = 0.41, E = 7.768. 

Chi (1962) found that boundary-layer drag data indicate 

K = 0.40, E = 12. 

Other authors (e.g. Clauser 1954; Spalding 1964a, 1965; etc.) have recommended 
various other values for K and E .  The present authors have followed Spalding 
( 1 9 6 4 4  in using 

K = 0.40, E = 6.542. 

Coles (1956) expressed his recommendation for the law of the wake in tabular 
form and, as was noted by Hinze (1959), this differs only slightly from 

g{t}  = +( 1 - cos no. (3.1.3) 

Spalding (1964a, 1965) useda slightly different profile parameter from Coles’ I-I 
Equation (3.1.3) is compared with Coles’ g{g} relation in figure 1. 

and wrote equation (3.1.1) as 

1 
u+ = -In (Eyf) -t- ( 1 - zE)  &( 1 - cos n-6) utj, 

K 
(3.1.4) 

where the specific forms mentioned above have been utilized for the wall and 
wake components. The profile parameter xE can be interpreted physically as the 
ratio of the law-of-the-wall velocity at the outer edge of the boundary layer to the 
mainstream velocity. The quantity ( I  - zE)  is a measure of the relative magnitude 
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of the wake-component of the velocity profile. Typical wall and wake com- 
ponents and total velocity profiles are shown in figure 2 for Z, < 1 and Z, > 1. 

Coles (1956), in his determination of the law of the wake, examined only 
‘conventional’ boundary-layer profiles where Z, < 1 , whereas Spalding (1964a) 
assumed that the same g([> function could be used for all boundary layers with 
zE > 0, including wall-jet flows where Z, > 1 .  One of the aims of the present work 
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0 0.2 0.4 0.6 0.8 1.0 

t- 
FIGURE 1. Comparison of z = &( 1 - cos ~ 6 )  with Coles’s law of the wake. 

-, Coles’s law of the wake; - - -, z = &( 1 - cos nt). 

is to examine velocity profiles covering the whole range of z, values to see if 
Spalding’s assumption is justifiable. Coles himself noted that it was not possible 
to find satisfactory values for the parameters II, u, ( = J ( T / ~ ) )  and ya such 
that equation (3.1.1) would fit a profile, measured by Klebanoff & Diehl (1952), 
downstream of a point of reattachment. Coles also remarked that experiments 
performed by Wieghardt (1944) indicated that there is a definite change in the 
shape, as well as in the amplitude, of the wake component in flow at constant 
pressure when the level of free-stream turbulence is varied. 

3.2. Drag law 

As shown in $ 2 ,  equation (3.1.1) implies a drag law. If we use the form for 
f { y + }  given in equation (3.1.2),  the drag law, equation (2.14),  becomes 

where 

= (KZE/1)2y 

I = In (Ey;) = In (ERG&. 
(3.2.1) 

(3.2.2) 
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It is worth pointing out, perhaps, that the drag law represented by equation 
(3.2.1) is independent of the specific form of the wake profile assumed. 

The drag law deduced from the velocity profile adopted here is compared, in 
figure 3, with the proposal of Ludwieg & Tillmann (1949) that 

(3.2.3) s = 0.123 x 10-0*678ER-O*266. 2 

0.4 Wake component 

0.2 Wall component f 
Z E  

z 

0 0.2 0.4 0.6 0.8 1.0 

f ;  

(a)  

f 
2 -  

Wall component 

ZE 

1 

z 

0 

-1 - 
( b )  

FIGURE 2. Typical velocity profiles according to equation (3.2.4). 
(a) Boundary-layer profile, z, < 1. (b) Wall-jet profile, z, > 1. 

The present law clearly yields values for s which are lower than those given by 
equation (3.2.3); in this connexion it is worth mentioning that Newman (1951) 
showed the Ludwieg-Tillmann law to overestimate drag, particularly when 
H is large. 

The present drag law is compared directly with experimental data in figure 4. 
There is considerable scatter, and it is seen that in many cases the wall shear 
stress is underestimated. Nevertheless, equation (3.2.1) is an improvement on 
the Ludwieg-Tillmann law for large H values and is the only available drag law 
which has been recommended for both wall jets and boundary layers. It will be 
retained, therefore, until a better law becomes available. 
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FIGURE 4. Drag coefficients computed from R, and H using present drag law compared 
with experimental data. 0 ,  Smith & Walker; + , Schultz-Grunow; 0 ,  recovering layer, 
0, equilibrium layer, Bradehaw & Ferries; a, Fage & Falkner and Fage; 0, Schubauer & 
Klebanoff; @, Newman; A, run 1, , run 2, Clauser. 



344 M .  P .  Escudier and W.  B. Nicoll 

Substitution of equation (3.2.1) into the definitions of U+ and y+ and sub- 
stitution of the latter into equation (3.1.4) yields a form of the velocity profile 
more convenient for later work, it is 

z = ~ ~ [ 1 + ( 1 n ~ / 1 ) ] + ( 1 - z ~ ) ~ ( 1 - ~ 0 ~ 7 ~ ~ ) .  (3.2.4) 

3.3. Comparison with experiment 

Values of the profile parameters have been determined for a number of experi- 
mental velocity profiles by the method of least-squares fitting. This procedure 
gives the values of zE and yG which minimize the square deviation R, defined by 

R = 2 Cz(y,) - ZiI2, 
i 

xi being the experimental velocity ratio at yi, and z(y,} the value given by 
equation (3.2.4) at yt. The measured and fitted profiles are shown in figures 5-11. 

,.-.--.--.--.--. 
4-*-*(4) R, = 41.24 x lo6 

re+---.--.--. ZE = 0.941 k 
(1) R, = 1.97 x 106 

ZE = 0910 

0 2  

0 0 2  0.4 0.6 0.8 1.0 
6 

FIGURE 5. Comparison of equation (3.2.4) with experimental velocity profiles 
Smith & Walker (1959) for flat-plate boundary layers. 

I n  figure 5, four profiles measured by Smith & Walker (1959) in boundary 
layers developing along a smooth, flat plate under zero pressure gradient are 
shown. The fitted profiles are evidently fairly good representations of the 
measured ones, although there is evidence of a small, but systematic, deviation 
from the fitted profile in the region of 5 = 0.3. Values of the shape factor H 
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calculated from the fitted profiles differ by up to 4 yo from the reported experi- 
mental values. 

Similar remarks to those in the preceding paragraph can be made about the 
profiles of Bradshaw & Ferriss (1 965) shown in figure 6. These data were obtained 
for a boundary layer recovering from the effects of an adverse pressure gradient- 
hence the relatively large wake-component at  x = 47 in., where z, M 0.67. 

0 0.2 0-4 0-6 0.8 1.0 

E 
FIGURE 6. Comparison of equation (3.2.4) with experimental velocity profiles of Bradshaw 
& Ferriss (1965) for a boundary layer recovering from the effects of an adverse pressure 
gradient. 

A purely cursory examination would indicate that equation (3.2.4) is a poorer 
fit to these data than to those of Smith & Walker, yet in this case the maximum 
difference between the reported experimental and computed values of H is less 
than 3 yo. Clearly, careful thought must be given to deciding what constitutes 
‘a good fit ’. 

The profiles of Schubauer & Klebanoff (1951), shown in figure 7, were obtained 
for a boundary layer subjected to an adverse pressure gradient which eventually 
caused the layer to separate (a little beyond x = 25ft.) Here again the profiles 
appear to  be reasonably well-fitted by equation (3.2.4), although for the two 
downstream profiles shown, the theoretical profile is inadequate near the wall. 
The profile at x = 25 ft. has a large wake-component, the value of zE being about 
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0.29, and in this case the shape factor calculated from the fitted profile is about 
2.38, compared with the reported experimental value of 1.99. 

The final set of velocity profiles for 2, < 1 are those of Stratford (1959), 
obtained for a boundary layer reported as having zero wall shear. In  this case 
zE = 0 and equation (3.2.4) reduces to the pure wake form 

2 = +(1- cos7r~). 

E 
e-a---* 

x = 17-5 ft. 
z~=0910 ' 

06 z 

0 0 2  0.4 06 0.8 Po 
E 

FIGURE 7. Comparison of equation (3.2.4) with experimental velocity profiles of Schubauer 
& Klebanoff (1951) for a boundary layer with an adverse pressure gradient. 

It is seen, in figure 8, that this expression is a very poor representation of Strat- 
ford's data. Also, for zE = 0, our profile gives the unique result H = 4, whereas 
Stratford's experiments gave values for H which varied from about 1.8 to 2.6. 

All the cases considered above related to boundary layers with 1 > z, 0. 
The remaining profiles, shown in figures 9-1 1 , were obtained for boundary layers 
where z, > 1, that is, for wall-jet flows. In  all these cases the assumed profile 
deviates fkom the measured one in the same way, being too low near the edge of 
the layer and near the wall, and too high in the middle of the layer. The deviations 
are seen to increase in magnitude as z, increases, that is, as the wake component 
becomes dominant. Also, the assumed profile gives roughly the correct value for 
the velocity maximum, but this always occurs further from the wall than the 
measured maximum. 
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FIGURE 8. Comparison of z = +( 1 - cos ~ 5 )  with 
experimental velocity profiles of Stratford (1969) 
for boundary layers with zero wall-shear stress. 

I 
zE=2.65 

1 I I 
0 05 1.0 1.5 

FIGURE 9. Comparison of equation (3.2.4) 
with experimental wall-jet velocity profiles 
of Nicoll (1966). 
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FIGURE 10. Comparison of equation FIGURE 11. Comparison of equation 
(3.2.4) with experimental wall-jet (3.2.4) with experimental wall-jet 
velocity profiles of Nicoll (1966). velocity profiles of Nicoll (1966). 
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Clearly, for both Z, > 1 and Z, c 1 there is a need for improvement in the 
assumed velocity profile. The most obvious deficiency is probably the absence of 
a term to account for the effects of pressure gradient; current work is aimed at 
remedying this. For the time being, however, equation (3.2.4) will be retained as 
the velocity-profile assumption. 

4. Entrainment function 
4.1. Review of previous recommendations 

The idea of using an entrainment function as the auxiliary equation in 
turbulent-boundary-layer calculations came from Head ( 1960). Head’s entrain- 
ment function may be written, formally, as 

-ma = -ma{H1}7 (4.1.1) 

where Hl is a shape factor of the velocity profile, defined by 

Hl = (Ya - 81)/82 (4.1.2) 

(in terms of I, and I,, Bl = I1/(Il--I2)). Head made no recommendation for a 
velocity-profile family and therefore required, in addition to his entrainment 
function, a relation between the shape factors H’and Hl and also a drag law. The 
H N Hl relation was deduced from experimental data, and the drag law assumed 
was that proposed by Ludwieg & Tillmann (1949). Head carried out calculations 
on a number of boundary layers and, in spite of his entrainment law being based 
upon only two sets of experimental data, those of Newman (1951) and Schubauer 
& Klebanoff (1951)’ obtained fairly satisfactory agreement with experiment. 
In  all the cases considered, Head used the measured values of 8, in his calculations 
of H instead of calculating simultaneously 8, and H .  Only in the case of the 
experiment of Newman was there poor agreement between the predicted and 
measured H values. This comparison was improved when 8, and H were simul- 
taneously predicted. 

Head’s entrainment law is shown in figure 12. 
The only other author to make recommendations for the entrainment function 

-ma = 0.1023(1 -zE)(l  +&,), 

is Spalding ( 1 9 6 4 ~ ~  b, 1965). Spalding’s first proposal ( 1 9 6 4 ~ )  was 

(4.1.3) 

The basic form for these relations was arrived at by consideration of information 
relating to free mixing layers. The constants were determined from analyses of 
the equilibrium flat-plate boundary layer and of the spread and velocity-decay 
information available for wall jets. 

In  an annotated version of the paper cited above, Spalding (1964b) noted that 
equations (4.1.3) considerably over-estimate entrainment rates and remarked 
that these relations were over-elaborate. The following, simpler, relations were 
then proposed 

1 z, < 1: 

2, > 1: -ma = 0*09(z,- 1) (1 +iZE)/(l +x,). 

(4.1.4) 
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The entrainment function was modified further in a more recent paper, 
Spalding (1965), to 

z, < 1 
2, > 1 : 

-ma = 0-06 - 0.05zE, 

- m, = 0.032, - 0.02. 
(4.1.5) 

I n  figure 12 curves of -m, plotted against HI, are drawn representing the 
proposals of Head (1960), of Spalding (1964a, b, 1965) and of the present authors, 
for the entrainment function for zE 6 1. 

008 r I 

Spalding (1964a) 
- mc = 0.1023 (1 - ZE) (1 + $ 2 ~ )  

Spalding (1965) 
- m~ = 0.06 - 0052E 

0 2 4 6  8 10 12 

H I  

FIGURE 12. Comparison of various recommendations for the 
entrainment function for z, < 1. 

An entrainment law can be deduced from the hypothesis of Mellor & Gibson 
(1963) that the effective kinematic viscosity in the wake region of a boundary 
layer is equal to a constant times ua.S, (the value of the constant was taken 

zE < 1: -m,x  0*07(1-~E). (4.1.6) 
as 0.016). It is 

This is not far different from Spalding's proposal, equation (4.1.4). 
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4.2. Determination of entrainment rates from experimental data 

The basic information required in the determination of entrainment rates is the 
variation of R, with R, ,the value of - m, being determined by differentiation 
of R, with respect to R,. To deduce R, from experimental velocity-profile data, 
it is necessary first to know the boundary-layer thickness y ,  and it is evidently 
desirable to use a consistent method for determining this somewhat arbitrarily- 
defined quantity. One such method is to adopt a velocity-profile family, such as 
that represented by equation (3.2.4), and to determine the values of the profile- 
parameters which give the best fit to the experimental profile. Alternatively, 
properties of experimental velocity profiles, such as R, and H ,  can be matched 
with those given by the adopted profile and the profile-parameters determined 
in this way. With only a few exceptions, the data for wall jets (zE > 1) and 
boundary layers (zE < 1) have been analysed by different methods. The reasons 
for this are outlined below and the procedures then described. 

One of the authors (W. B. N.) has been concerned exclusively with boundary 
layers where zE > 1, and the other with flows for which zE < 1. In  the latter case, 
all the data examined were extracted from the literature, whereas many of the 
wall-jet data were obtained (by W.B.N.) in the authors’ own laboratory. 
Experimental data are almost invariably published in the form of small-scale 
graphs and the retrieval of complete velocity-profile data is usually extremely 
difficult and time consuming. For this reason it was felt that, so far as boundary 
layers with z, < 1 were concerned, best use could be made of the time available 
by deducing the profile parameters from integral properties of the velocity 
profiles. For wall jets, of course, most of the experimental data were at hand and, 
in the main, actual profiles could be analysed. 

Naturally, the methods of analysis are complementary and, if the theoretical 
profile is a good representation of measured profiles, only small differences should 
arise in the final results. 

4.2.1. Analysis generally w e d  for boundary-layer data where z, < 1 

The velocity-profile expression assumed was that represented by equation 
(3.2.4). This is a two-parameter profile, so the parameters Z, and yG, and all 
quantities associated with velocity profiles, such as R,, R,, H ,  s, etc., can be 
deduced from any two independent properties of a measured profile, together 
with the appropriate fluid properties (p and p)  and the mainstream velocity u,. 

The two quantities most commonly reported by boundary-layer experimenters 
are the momentum thickness 8, and shape factor H .  These were the quantities 
from which most of the information concerning boundary layers was deduced. 
A computer program was developed to perform the computations and data from 
over five hundred profiles were analysed. 

4.2.2. Analysis generally w e d  for wall-jet data 

and the fitting procedure the least-squares method described in Q 3.3. 
The velocity profile adopted was again that represented by equation (3.2.1) 
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4.2.3. Analysis occa8ionally used for wall-jet data 
When the detailed information required for the least-squares-fitting procedure 

was not available, the profile parameters were determined from the reported 
experimental values of Xmax and y), where Zmax is defined as the ratio of the maxi- 
mum velocity in the wall jet to the mainstream velocity, and y+ is the value of 
y at which x = 24 = i (Zm=+ 1). 

It may be seen from figures 9 to 11 that the least-squares-fitting procedure 
results in values for Zm= and y4 which agree well with the experimental values. 
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FIGURE 13. Entrainment rates deduced from experimental data for Z, < 1. p, Reynolds, 
Kays & Kline; x , Smith & Walker; + , Schultz-Grunow, 0, Klebanoff; II 4 4 A w D, 
Klebanoff & Diehl; A run 1,. run 2, Clauser; 0, Bradshaw & Ferriss; v 0, Herring & 
Norbury; 
FIGURE 14. Entrainment rates deduced from experimental data for Z, < 1 plotted 
against Head’s shape factor. Symbols as for figure 13. 

, Newman; 0 ,  Schubauer & Klebanoff. 

4.3. Discussion of entrainment data 
One of the attractive features of the entrainment function lies in the availability 
of data, from which information about it can be obtained. A complete survey of 
velocity-profile data, of course, would be impossible, and in the present work 
a certain amount of selection has been necessary. An attempt has been made to 
include those data which are the most completely reported and, in the opinion 
of the present authors, the most reliable. 

Entrainment rates deduced from all the data considered for boundary layers 
with z, < 1 have been plotted against zB and HI in figures 13 and 14 respectively. 
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Although the plot of -ma against Z, shows considerable scatter, the bulk of the 
data lends some support to an entrainment law of the form 

- mG = const. (1 - zE).  (4.3.1) 

As was mentioned earlier, such a form was proposed by Spalding (19644, the 
value for the constant being given as 0.06. The present investigation indicates 
0.075 to be a better value, i.e. - 

- mG = 0.075( 1 - zE). (4.3.2) 

This result is close to that deducible from the work of Mellor & Gibson (1963) (see 
$ 4.1) and is the present authors’ recommendation for zE < 1. 

Unfortunately, however, the data obtained for flat-plate boundary layers are 
irreconcilable with equation (4.3.2). The value of z, appropriate to such boundary 
layers is about 0.92 and the corresponding value of - m,, according to equation 
(4.3.2), is 0-006. The data of Klebanoff (1955), Reynolds, Kays & Kline (1958), 
Schultz-Grunow (1940) and Smith &Walker (1959) indicate - mG x 0.01 1 ,  a value 
almost double that given above. The value of the constant in equation (4.3.1) 
would have to be 0.1375 to give -mG = 0.011 for zE = 0-92, and this would 
conflict with the data for zE < 0.92. This suggests that equation (4.3.1) may 
not be the best form for an entrainment function and perhaps indicates why 
Spalding (1965) was lead to propose the relation 

which gives -m, = 0.014 for z, = 0.92, a value more in keeping with the flat- 
plate data. Even so, this equation considerably overestimates entrainment rates 
for other boundary layers where zE x 0.9. It is not clear whether this apparent 
discrepancy in the data is due to scatter, which results from the difficulty of 
determining -mG, or to the effect of some parameter, other than z,, which 
influences the entrainment process. 

The -mG N Hl plot in figure 14 shows that the assumption made by Head 
(1960), that - m, could be taken as a function of Hl alone, was quite a reasonable 
one. Indeed the data so far examined show that the hypothesis of Spalding and 
of the present authors, that - m, = - m,(zE}, is only a little better than Head’s. 

The entrainment data for Z, > 1 are shown in figure 15. As for Z, < 1, the 
data display considerable scatter, again probably due to the method of deter- 
mination of - mG rather than to any real physical effect. This view is supported 
by the comparisons of predicted with experimental wall-jet development given 
in $5. 

- mG = 0.06 - 0*05~E,  

The straight line shown in figure 15 represents the equation 
- mG = 0.032, - 0.02, (4.3.3) 

and is the present authors’ recommended entrainment relation for Z, > 1. 

4.4. Entrainment function for equilibrium flows 
For an equilibrium boundary layer, Spalding ( 1 9 6 4 ~ )  intimated that the 

parameter zE is nearly constant. For such flows, therefore, dzE/dRx can be regarded 
as negligible and equation (2.21) reduces to 

(4.4.1) 
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We follow Clauser (1954, 1956) in defining a pressure-gradient parameter ,4: 

(4.4.2) 

which, as Clauser observed, should be constant for equilibrium flows. Equation 
(4.4.1) may then be re-arranged as 

where 

and H Sl/S2 = (1 - 11)/(Il -1.). 

-ma = Hls[l +,4(1+ l/R)J, 

4 = ( y a - W ~ 2  = 1 1 / ( 4 - 1 2 1 ,  

(4.4.3) 
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ZE 

FIGURE 15. Entrainment rates deduced from experimental data for z, > 1. 4 A, Gart- 
shore; 0 A, Kruka & Eskinazi; 0 v 0 A 0 El 0, Nicol; D (3, Patel Br; Newman; 
+ x , Seban & Back. 

Clauser also showed that an appropriate shape factor for equilibrium flows is G ,  
where 

(4.4.4) 

and $' = (u, - u)/u,, the velocity defect. (4.4.5) 

For a particular value of B, the velocity-defect profles are independent of 
Reynolds number and therefore G is constant. Thus, for equilibrium boundary 
layers, there must be a unique relation between G and B. An empirical relation 
proposed by Nash (1965) for boundary layers with z, < 1 is 

G = 6*1(,4+ l.Sl)*- 1.7. (4.4.6) 

The parameter G is related to the more usual shape factor ( H )  as follows: 

G = s-*( 1 - l / H ) ,  (4.4.7) 

[or G = s-*( 1 - 21, +Iz)/( 1 -I1)]. 
23 Fluid Mech. 25 
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Equations (4.4.3), (4.4.6), (4.4.7) and the velocity-profile assumption have been 
used to determine the curves of -ma against zE plotted in figure 16. These 
curves again indicate that the effects of Reynolds number, measured through 
the parameter 1, are comparatively unimportant and that the hypotheais 
- ma = - m,{z,) is a, reasonable one. The curves clearly show the same trends 
8s the experimental data and, perhaps, suggest that the data for flat-plate flows, 
flows with zE --f 0 and flows with z, w 1 will not be well represented by a single 
straight line (see Q 4.3). 

007 

006 

005 

Q 004 
I 

003 

002 

0.01 1 
0 0.2 04 0 6  0 8  1.0 

=E 

F~arrrt~ 16. Comparison of theoretical entrainment rates for equilibrium 
boundary layers with experimental data. Symbols aa for figure 13. 

An interesting result deducible from the equilibrium-boundary-layer analysis 
is the value of -mG for z, = 0. In  this case, s = 0, p = 00 and Nash's relation 

G/@ = 6.1. (4.4.8) 
gives 

(N.B. Mellor & Gibson (1963) gave G/@ + 5.9 for /3 -+ co.) Thus, from equation 
(4.4.6) 

and, from equation (4.4.3) 
PS = El/(6.1)2] (1 - 1/H)2 

i.e. (4.4.9) 
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The assumed velocity profle then gives 2, = 0: H = 4, HI = 4, and equation 
(4.4.9) -m, = 0.0756. This result is in excellent agreement with the value for 
- m, obtained by extrapolation of the experimental dat$ to z, = 0. 

4 -  

I 

G 

- 
l l l l t l l l l l l l l l l j  

The equilibrium analysis cannot, at present, be applied to wall-jet flows 
because Nash’s G N B relation is not valid for such flows. It is of some interest, 
however, to perform the inverse analysis and determine G - B relations from the 
recommended entrainment functions for z, < 1 and zE > 1. The results of this 
analysis for zE < 1 are shown in figure 17 together with Nash’s relation and the 
available experimental data. The curves for 1 = 8,lO and 12 are indistinguishable, 
and the differences between the curves deduced from - m, = 0.075( 1 - z,) and 
Nash’s formula are slight. Although the available experimental data for equi- 
librium boundary layers are sparse, it would seem that there is little to choose 
between Nash’s formula and a (7 N B relation deduced via the entrainment 
function. Also, an entrainment function based upon a G - /3 relation is clearly 
sensitive to the relation adopted. 

For equilibrium wall jets, the G N B relation implied by the entrainment law 
-ma = 0-032, - 0.02 is shown in figure 18. The practical limitations of experi- 
mental apparatus limit accessible values of 1 to the vicinity of 10 and the spread 

23-2 
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with 1 is thus rather unrealistic (to change 1 by 10 yo would require a change of 
roughly 250% in Ra); The experimental data of Patel & Newman (1961) are 
shown in figure 18 and are consistent with the G - /? relation deduced for 1 = 10. 

15 

10 

0 
I 

5 -  

- 

- 

0 1 2 

P 
FIQURE 18. The 0 N P relation for equilibrium wall jets deduced from the entrainment 

function for z, > 1. 0, Patel & Newman. 

4.5. Conclusions and recommendations regarding the entrainment function 
The main obstacle in the determination of entrainment rates is the diaculty of 

specifying the boundary-layer thickness. To a certain extent this has been over- 
come and some degree of consistency achieved by adopting a velocity-profile 
family, the thickness and other profile-parameters being determined by fitting 
this to the experimental profiles or quantities derived from the profiles. 

Analysis of a large amount of data has indicated that the hypothesis 

- m, = - ma(zE} 

is a little better than that of Head (1960), -mG = -m,{Hl), although there is 
considerable scatter in both the - ma N zE and - m, - Hl plots. The difficulties 
and inherent inaccuracies involved in the determination of -ma preclude the 
inclusion of parameters other than z, in an entrainment function, although the 
possible importance of other parameters (such as I ,  dzE/dR,, etc.) cannot be 
ruled out. 
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The following entrainment functions appear to fit the experimental data as 
well as any; they will be used, for the time being at least, as auxiliary equations in 
the prediction of boundary-layer flows. 

0 Q ZE Q 1: 

1 < 2,: 

-mG = 0*075(1 -zE), 

- m, = 0.03zE - 0.02. 

These relations imply a discontinuity at Z, = 1, a result of fitting ‘best ’ straight 
lines to the data for Z, < 1 and Z, > 1. 

In  the following section a brief examination will be made of the sensitivity of 
the predictions to the entrainment function adopted. 

For Z, < 1, an entrainment function deduced from the G N /3 relation of Nash 
(1965) for equilibrium boundary layers is in qualitative agreement with the 
recommendation made above for Z, < 1. It is shown, however, that the entrain- 
ment function so derived is sensitive to small changes in the G - /3 relation. 

5. Comparison of the predictions of the present method with experi- 

5.1. Methods of calculation mental data 

The general prediction procedure involves the simultaneous solution of the 
differential equations derived in § 2 from the integral mass-conservation equation 
and the momentum integral equation. The required input is the variation of uG 
with R, and two initial conditions. In  the case of boundary layers with zE < 1, 
these initial conditions were taken as the values of R, and Z, computed from the 
reported measured value of R, and H at the starting-point. For wall jets the 
initial values of z, and R, were deduced from the measured velocity profile a t  the 
starting-point using the least-squares-fitting method. 

The quantities predicted were the values of R,, H and s. In  addition, for wall- 
jet flows the values of the more usual wall-jet variables umax/uG and y&, were 
computed with the aid of the assumed velocity profile, equation (3.2.4). As well 
as this general procedure, calculations for flows with zE < 1 have been carried 
out using measured values of R, as data, the integral mass-conservation equation 
only being solved. Thompson (1964) came to the conclusion that experimental 
values of R, provide the best basis for comparing the calculated with the 
measured shape-factor development. This, it  was argued, allows some account 
to be taken of the three-dimensional character of most real flows. Whilst this may 
be true, in completely new circumstances two-dimensional conditions have to be 
assumed and the prediction of both R, and H is necessary. 

For equilibrium flows an alternative method of calculation was also used. The 
value of Z, was taken as the mean of the values deduced from the experimental 
values of R, and H .  The prediction procedure again reduces to the integration of 
a single differential equation. In  this case, however, we have an analytical 
expression for the entrainment law, equation (4.4.3), 

-mG = HIs(1 +/3+/3/H). 
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5.2. Discussion of predictions forsows with zE < 1 

In  figures 19-26 are shown reported measured values of R, and H plotted against 
R,. Also shown are experimental values of skin-friction coefficients s, the method 
by which these were obtained being noted on the relevant graphs. On each of 

2.0 

of & and H using present drag law 

1 2 3 4 
10" R, lo4 R, 

FIUI~~JRE 19 FIGURE 20 

FIGURE 19. Comparison of predicted boundary-layer development with experimental data 
of Schultz-Grunow (1940). Flat-plate boundary layer. 

FIGURE 20. Comparison of predicted boundary-layer development with experimental 
data of Klebanoff & Diehl (1952). Flat-plate boundary layer recovering from the effects 
of an upstream disturbance, uG = 35 ft./sec. 

these figures there appears a number of lines; those drawn full were obtained by 
the general prediction method (i.e. using as data only ua{Rz} and initial condi- 
tions). The chain-dashed lines on the H and s plots were computed using the 
dashed lines drawn through the plotted R, values as data. The additional lines 
appearing in the figures displaying data for equilibrium boundary layers were 
obtained assuming a constant value for zE as outlined in 0 5.1. 

The following conclusions may be drawn from the comparisons: 
(a) In  the majority of the cases examined, agreement between the predictions 

and the experimental data is fairly good. Failure to predict R, accurately, 
however, leads to poor predictions of H and s. 

( b )  Predictions of H and s using measured R, values are generally better than 
those obtained when R, is computed simultaneously with H .  The only exception 
to this generalization is the prediction of Clauser's second equilibrium boundary 
layer. The reason for the behaviour of this exceptional case is not yet known. 
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(c)  The best predictions of the equilibrium boundary layers of Clauser are 
obtained when the appropriate constant value of x E  is assumed; this is hardly 
surprising since z, and H are very strongly related to one another. 

l t -  

1.4 

- ~ I z G = O . O ~ - O . O ~ Z ~  

---_ _-------_ 1.1 
1.0 0--- - ~ 

o\ \ 

Drag computed from measured ’:\ 
\\ values of R, and H using 

present drag law 

0.8 

0.4 
0.2 

2 0.5 

0 05  1.0 1.5 20 25 

10-sR, 1O4R, 

FIGURE 21 FIGURE 22 

FIGURE 21. Comparison of predicted boundary-layer development with experimental data 
of Bradshaw & Ferriss (1965). Boundary layer recovering from the effects of an adverse 
pressure gradient. 
FIGURE 22. Comparison of predicted boundary-layer development with experimental data 
of von Doenhoff & Tetervin (1943). Boundary layer on an aerofoil, NACA 65 (216) 222 
(approx.), R = 3 . 6 4 ~  lo6, CL = 1O*Io. 

For the boundary layers of Schultz-Grunow (1940) and of von Doenhoff & 
Tetervin (1943) additional predictions of H and s were made using an entrainment 
equation differing from that recommended here. The equation used was that 
recommended by Spalding (1965) 

In  the discussion in $4.3 it was shown that this entrainment function is a better 
fit to the experimental data for the flat-plate boundary layer than is equation 
(4.3.2)’ the present recommendation. This view is supported by the graphs shown 
in figure 19, where it is seen that the prediction of Schultz-Grunow’s boundary 
layer is considerably improved using this equation. 

Figure 22, however, indicates that Spalding’s entrainment equation leads to 
poorer predictions in the case of the flow reported by von Doenhoff & Tetervin 
than does the present authors’ recommendation. 
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5.3. DiSCU88iOn of predictions of flow8 with x E  > 1 

Comparisons of measured with predicted wall-jet development are shown in 
figures 27-36. The data shown were reported by Kruka & Eskinazi (1953) 
and Nicoll (1965) and cover the following ranges of slot Reynolds numbers 

P - 

1 1 I I J 

25  r 0 

I I 1 1 I 

0 0.5 10 1.5 2.0 25 
10-'JR, 

FIUURE 23 

3t- a 

0 1 2 3 4 5 6 7  

10-sR, 

FIGURE 24 

FIUURE 23. Compclriaon of predicted boundary-layer development with experimental 
data of Newman (1951). Boundary layer on a symmetrical rear-stalling aerofoil. 0, Drag 
obtained by extrapolating measured shear-stress profiles to wall. 0, Drag obtained from 
velocity profiles by Clauser's method. 

FIGURE 24. Comparison of predicted boundary-layer development with experimental 
data of Schubauer BE Klebanoff (1951). Boundary layer on a convex wall with an adverse 
pressure gradient. 0, Drag obtained by extrapolating measured shear-stress profiles to  
wall. 0, Drag obtained from velocity profiles by Clauser's method. 

R,( E u , ~ , / Y )  and velocity ratios (u , /u~ ,~ ) ,  

3,000 < R, < 24,000, 

1.55 < ?,hc/?.6G,o < 18. 

In general the predictions follow the experimental results quite closely and it may 
be concluded that the present method satisfactorily predicts wall-jet develop- 
ment over the range of pressure gradients and velocity ratios examined. 
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6.1. Velocity proJiles 6. Conclusions 

The velocity profile assumed in the present work, equation (3.2.4), appears to 
fit experimental velocity profiles adequately for the range 

0.5 < Z, < 5 (approx.). 

At lower Z, the values of the shape factor, H ,  and the momentum thickness, S,, 
deduced from the least-squares-fitted profile differ significantly from the experi- 
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0 I I I 1 

2 O  t 
1 *o u 

05 Drag obtained from velocity proflees by 
Clauser's method t - 

0 1 2 3 4 
104R, 

FIUURE 25 
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08 r 
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 FIG^ 26 

FIGURE 25. Comparison of predicted boundary-layer development with experimental data 
of Clauser (1954), pressure distribution 1. Equilibrium boundary layer with an adverse 
pressure gradient, ,8 w 1.8, z, w 0.77. 
FIGTJRE 26. Comparison of predicted boundary-layer development with experimental 
data of Clauser (1954), pressure distribution 2. Equilibrium boundary layer with an 
adverse pressure gradient, ,8 NN 8.0, z, w 0-53. 

mental values. At higher z,, the shape of the experimental profiles differs in a 
consistent manner from that of the assumed profile. The values of H ,  S,, y+ and 

obtained from the least-squares-fitted profile agree closely with the experi- 
mental values, although the value of ymm so obtained does not. 

The drag law implicit in the assumed profile is an improvement over the 
Ludwieg-Tillmann drag law at high values of the shape factor H and has the 
advantage of being applicable to wall-jet flows. 
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FIGURE 27. Comparison of predicted wall-jet development with experimental data of 
Kruka & Eskinazi (1963), run 1. Uc/uG,o  = 3-8, Rc = 1.07 x 104. 0, R,; 0, H ;  ., u-/zcc; 

FIGURE 28. Comparison of predicted wall-jet development with experimental data of 
Kruka & Eskinazi (1963), run 2. u,/uG,~ = 10, R, = 1.31 x 104. Symbols as for f i w e  27. 
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FIGURE 29. Comparison of predicted wall-jet development with experimental data of 
Kruka t Eskinazi (1963), run 3. U,/UG,~ = 18, R, = 2.63 x 104. Symbols as for figure 27. 

FIGURE 30. Comparison of predicted wall-jet development with experimental data of 
Nicoll (1965), run 2. uc/UG,o = 2.71, R = 2-37 x 104. Symbols as for figure 27. 
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FIGURE 31. Comparison of predicted wall-jet development with experimental data of 
Nicoll (1966), run 3. Uc/UG,o = 13.2, R, = 2.31 x 104. Symbols as for figure 27. 

F I W ~ E  32. Comparison of predicted wall-jet development with experimental data of Nicoll 
(1966), run 4. U,/UG,o = 6.22, R, = 2.28 x 104. Symbols as for figure 27. 
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FIGURE 33. Comparison of predicted wall-jet development with experimental data of Nicoll 
(1966), run 5. Uc/UG,o = 2-10, Rc = 6-59 X 108. SymbozS &8 for figure 27. 

FIGURE 34. Comparison of predicted wall-jet development with experimental data of Nicoll 
(1965), run 7. Uc/UG,o = 2.43, Rc = 1 . 1 4 ~  104. Symbols as for figure 27. 



364 M .  P .  Escudier and W .  3. NicoEt 

6.2.  Entrainment function 

Dimensionless entrainment rates are shown to correlate reasonably well with 
the parameter zE. The following formulae fit the data as well as any and are the 
present authors’ recommendations 

O<Z,< 1, -ma = 0*075(1-~E), 

z E >  1, -ma = 0.03~E-0.02. 

The determination of entrainment requires both the specification of the outer 
edge of the boundary layer (for the determination of the flow within the boundary 

f ;rIT];im 
0 2  

0 
I 1  01 

0 005 0 1  015 02  
10-6Rx / 

0 

I 

0 0.02 004 006 008 
10-6RI 

10 20 30 40 50 60 70 80 90 100 
dY= 

10 20 30 40 50 60 70 80 90 100 
XIYC 

10 20 30 40 50 60 70 80 90 100 

s” 0 1  

10 20 30 40 50 60 70 80 90 100 

XIYO X I Y O  

FIGURE 35 FIGURE 36 

FIGURE 35. Comparison of predicted wall-jet development with experimental dataof Nicoll 
(1965), run 9. U J U G , ~  = 4.81, R, = 1 . 1 4 ~  lo4. Symbols as for figure 27. 

FIGURE 36. Comparison of predicted wall-jet development with experimental data of Nicoll 
(1965), run 10. u,/UG,o = 12.9, R, = 1-12 x 104. Symbols as for figure 27. 

layer) and the differentiation of the flow so obtained. This gives rise to consider- 
able scatter in the experimental entrainment rates and thus precludes the 
determination of any weaker dependence of entrainment on quantities other 
than zE. 

6.3.  Predictions 

Predictions have been made, using the recommended entrainment functions, 
of the shape factor H ,  momentum-thickness Reynolds number R, and drag 
coefficient s, and also, in the case of wall-jet flows, of the half-thickness y+ and 
the velocity maximum Urnax. The boundary-layer predictions are in reasonable 
agreement with experiment, except when separation conditions are approached. 
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Since the present form of the ‘unified theory ’ applies only to two-dimensional 
flows, this failure may be due to lack of two-dimensionality in the reported 
separation experiments. Certainly ‘the predictions based upon experimental 
values of R, are in good agreement with experiment, even when separation 
occurs. However, since the assumed velocity profile does not fit experimental 
profiles near separation conditions, the authors reserve their opinion as to the 
exact cause of the failure to predict separation. 

The wall-jet predictions are good, both for zero pressure gradients and for 
adverse pressure gradients. 

The authors would like to express their appreciation to Prof. D. B. Spalding 
for his help and advice in all stages of their work, which forms part of a programme 
of research, co-ordinated by Prof. Spalding, into turbulent flows near walls. 
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